当前位置: 老葡京网站娱乐 > 网络技术 > 无线网络 > 正文

蓝牙无线接入系统简介

时间:2008-05-30

老葡京网站娱乐 www.sdguanhua.com 个人通信是人类通信的最高目标,它利用各种可能的网络技术,实现人与人之间任何时间、任何地点。任何种类的通信。在近距离通信中,蓝牙(Bluetooth)无线接入技术使无线单元间的通信变得十分容易,将计算机技术与通信技术更紧密地结合在一起,人们可随时随地进行信息的交换与传输。除此之外,蓝牙技术还可为数字网络和外设提供通用接口,以组建远离固定网络的个人特别连接设备群。
1 无线频段的选择和抗干扰
  蓝牙技术采用2400~2483.5MHz的ISM(工业、科学和医学)频段,这是因为:(1)该频段内没有其它系统的信号干扰,同时频段向公众开放,无须特许;(2)频段在全球范围内有效。世界各国、各地区的相关法规不同,一般只规定信号的传输范围和最大传输功率。对于一个在全球范围内运营的系统,其选用的频段必须同时满足所有规定,使任何用户都可接入,因此必须将所需要素最小化。在满足规则的情况下,可自由接入无线频段,此时,抗干扰问题便变得非常重要。因为2.45GHZ ISM频段为开放频段,使用其中的任何频段都会遇到不可预测的干扰源(如某些家用电器、无绳电话和汽车开门器等),此外,对外部和其它蓝牙用户的干扰源也应作充分估计。
  抗干扰方法分为避免干扰和抑制干扰。避免干扰可通过降低各通信单元的信号发射电平来达到;抑制干扰则通过编码或直接序列扩频来实现。然而,在不同的无线环境下,专用系统的干扰和有用信号的动态范围变化极大。在超过50dB的远近比和不同环境功率差异的情况下,要达到1Mb/s以上速率,仅靠编码和处理增益是不够的。相反,由于信号可在频率(或时间)没有干扰时(或干扰低时)发送,故避免干扰更容易一些。若采用时间避免干扰法,当遇到时域脉冲干扰时,发送的信号将会中止。大部分无线系统是带限的,而在2.45GHZ频段上,系统带宽为80MHz,可找到一段无明显干扰的频谱,同时利用频域滤波器对无线频带其余频谱进行抑制,以达到理想效果。因此,以频域避免干扰法更为可行。
2 多址接入体系和调制方式
  选择专用系统多址接入体系,是因为在ISM频段内尚无统一的规定。频分多址(FDMA)的优势在于信道的正交性仅依赖发射端晶振的准确性,结合自适应或动态信道分配结构,可免除干扰,但单一的FDMA无法满足ISM频段内的扩频需求。时分多址(TDMA)的信道正交化需要严格的时钟同步,在多用户专用系统连接中,保持共同的定时参考十分困难。码分多址(CDMA)可实现扩频,应用于非对称系统,可使专用系统达到最佳性能。直接序列(DS)CDMA因远近效应,需要一致的功率控制或额外的增益,与TDMA相同,其信道正交化也需共同的定时参考,随着使用数目的增加,将需要更高的芯片速度、更宽的带宽(抗干扰)和更多的电路消耗。跳频(FH)CDMA结合了专用无线系统中的各种优点,信号可扩频至很宽的范围,因而使窄带干扰的影响变得很小。跳频载波为正交,通过滤波,邻近跳频干扰可得到有效抑制,而对窄带和用户间干扰造成的通信中断,可依赖高层协议来解决。在ISM频段上,FH系统的信号带宽限制在1MHZ以内。为了提高系统的鲁棒性,选择二进制调制结构。由于受带宽限制,其数据速率低于1Mb/s。为了支持突发数据传输,最佳的方式是采用非相干解调检测。蓝牙技术采用高斯型频移键控(GFSK)调制,调制系数为0.3。逻辑“1”发送正频偏,逻辑“0”发送负频偏。解调可通过带限FM鉴频器完成。
3 媒体接入控制(MAC)
  蓝牙系统可实现同一区域内大量的非对称通信。与其它专用系统实行一定范围内的单元共享同一信道不同,蓝牙系统设计为允许大量独立信道存在,每一信道仅为有限的用户服务。从调制方式可看出,在ISM频段上,一条FH信道所支持的比特率为1Wb/S。理论上,79条载波频谱支持79Mb/S,由于跳频序列非正交化,理论容量79Mb/s不可能达到,但可远远超过1Mb/S。
  一个FH蓝牙信道与一微微网相连。微微网信道由一主单元标识(提供跳频序列)和系统时钟(提供跳频相位)定义,其它为从单元。每一蓝牙无线系统有一本地时钟,没有通常的定时参考。当一微微网建立后,从单元进行时钟补偿,使之与主单元同步,微微网释放后,补偿亦取消,但可存储起来以便再用。不同信道有不同的主单元,因而存在不同的跳频序列和相位。一条普通信道的单元数量为8(1主7从),可保证单元间有效寻址和大容量通信。蓝牙系统建立在对等通信基础上,主从任务仅在微微网生存期内有效,当微微网取消后,主从任务随即取消。每一单元皆可为主/从单元,可定义建立微微网的单元为主单元。除定义微微网外,主单元还控制微微网的信息流量,并管理接入。接入为非自由竞争,625ps的驻留时间仅允许发送一个数据包?;诰赫慕尤敕绞叫杞隙嗫?,效率较低。在蓝牙系统中,实行主单元集中控制,通信仅存在于主单元与一个或多个从单元之间。主从单元间通信时,时隙交替使用。在进行主单元传输时,主单元确定一个欲通信的从单元地址,为了防止信道中从单元发送冲突,采用轮流检测技术,即对每个从到主时隙,由主单元决定允许哪个从单元进行发送。这一判定是以前一时隙发送的信息为基础实施的,且仅有恰为前一主到从被选中的从地址可进行发送。若主单元向一具体从单元发送了信息,则此从单元被检测,可发送信息。若主单元末发送信息,它将发送一检测包来标明从单元的检测情况。主单元的信息流体系包含上行和下行链路,目前已有考虑从单元特征的智能体系算法。主单元控制可有效阻止微微网中的单元冲突。当互相独立的微微网单元使用同一跳频时,可能发生干扰。系统利用ALOHA技术,当信息传送时,不检测载波是否空载(无侦听),若信息接收不正确,将进行 重发(仅有数据)。由于驻留期短,FH系统不宜采用避免冲突结构,对每一跳频,会遇到不同的竞争单元,后退(backoff)机制效率不高。
4 基于包的通信
  蓝牙系统采用基于包的传输:将信息流分片(组)打包,在每一时隙内只发送一个数据包。所有数据包格式均相同:开始为一接入码,接下来是包头,最后是负载。
  接入码具有伪随机性质,在某些接人操作中,可使用直接序列编码。接人码包括微微网主单元标志,在该信道上,所有包交换都使用该主单元标志进行标识,只有接入码与接入微微网主单元的接入码相匹配时,才能被接收,从而防止一个微微网的数据包被恰好加载到相同跳频载波的另一微微网单元所接收。在接入端,接入码与一滑动相关器内要求的编码匹配,相关器提供直接序列处理增益。包头包含:从地址连接控制信息3bit,以区分微微网中的从单元;用于标明是否需要自动查询方式(ARQ)的响应/非响应1bit;包编码类型4bit,定义16种不同负载类型;头差错检测编码(HEC)8bit,采用循环冗余检测编码(CRC)检查头错误。为了限制开销,数据包头只用18bit,包头采用1/3率前向纠错编码(FEC)进一步?;?。
  蓝牙系统定义了4种控制包:(1)ID控制包,仅包含接入码,用于信令;(2)空(NULL)包,仅有接入码和包头,必须在包头传送连接信息时使用;(3)检测(POLL)包,与空包相似,用于主单元迫使从单元返回一响应;(4)FHS包,即FH同步包,用于在单元间交换实时时钟和标志信息(包括两单元跳频同步所需的所有信息地其余12种编码类型用于定义包的同步或异步业务。
  在时隙信道中,定义了同步和异步连接。目前,异步连接对有无2/3率 FEC编码方式的负载都支持,还可进行单时隙、3时隙、5时隙的数据包。异步连接最大用户速率为723.2kb/s,这时,反向连接速率可达到57.6kb/s。通过交换包长度和依赖于连接条件的FEC编码,自适应连接可用于异步链,依赖有效的用户数据,负载长度可变。然而,最大长度受限于RX和TX之间最少交换时间(为200Ps)。对于同步连接,仅定义了单时隙数据包传输,负载长度固定,可以有1/3率、2/3率或无FEC。同步连接支持全双工,用户速率双向均为64kb/s。